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Quantization of an interacting spin-3
2 field and the D isobar
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Quantization of the free and interacting Rarita-Schwinger field is considered using the Hamiltonian path-
integral formulation. The particular interaction we study in detail is thepND coupling used in the phenom-
enology of the pion-nucleon and nucleon-nucleon systems. Within the Dirac constraint analysis, we show that
there is an excess of degrees of freedom in the model, as well as the inconsistency related to the Johnson-
Sudarshan-Velo-Zwanzinger problem. It is further suggested that couplings invariant under the gauge trans-
formation of the Rarita-Schwinger field are generally free from these inconsistencies. We then construct and
briefly analyze some lowest in derivatives gauge-invariantpND couplings.@S0556-2821~98!01919-5#

PACS number~s!: 11.10.Ef, 11.15.2q, 13.75.Cs, 13.75.Gx
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I. INTRODUCTION

A covariant description of the interacting spin-3/2 field
famous for its various problems and paradoxes. Prese
supergravity is the only example of a local field theory whi
includes a massless spin-3/2 field~gravitino! in a consistent
way, for a review see Ref.@1#. For the particle phenomeno
ogy, however, it would be desirable to construct a consis
description in a flat space. Such a description is needed
example, for the treatment of the spin-3/2 baryon resonan
such as theD(1232) isobar, in low-energy hadron scatteri
@2–7#. Another interesting application is the search for t
spin-3/2 leptons@8#.

The major problems in the local1 higher-spin field theory
are closely related to the presence of unphysical lower-s
components in the covariant representation of the field. M
specifically, a field with a given spins>1, in addition to the
physical components, necessarily contains component
spin (s21), (s22), etc. For instance, in the Rarita
Schwinger~RS! formalism @10# adopted in this work, the
spin-3/2 field is represented by a 16 component vector-sp
cm , while only 4 components are needed for the descript
of a massive spin-3/2 particle and thus the rest of the c
ponents should be attributed to the lower-spin sector.
free action of such theories is then constructed in such a
that at the level of the equations of motions the constra
are produced reducing the number of independent com
nents to the necessary value~equal to 2s11 for a massive
and 2 for a massless particle with spin!.

In the interacting case the situation is generally m
complex, since all the components may couple in a nontri
way. The constraints are then altered, moreover their am
may change. In the latter case, i.e., if the number of c
straints in the free and interacting theory is different, one
conclude that a wrong number of degrees of freedom~DOF!
is interacting, and therefore, this form of interaction is phy
cally unacceptable. Another type of inconsistency wh
may often arise is the presence of the famous John
Sudarshan~JS! @11#, and Velo-Zwanzinger~VZ! @12# prob-

1For nonlocal formulations see@9#.
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lems. More recently, it was shown that JS and VZ proble
have a common origin@13#, and furthermore they are relate
to the mentioned problem of the constraint violation@14,15#.

All these problems are known@2,16,17# to be present for
the coupling of a massive RS fieldcm(x) to a spinorC(x)
and a ~pseudo-! scalar f(x) described by the following
Lagrangian:2

Lint5gc̄m~gmn1agmgn!C]nf1H.c., ~1!

where g is the coupling constant, anda is related to the
off-shell parameter zas follows:a52z2 1

2 , cf. Ref.@2#. Up
to the isospin complications, this interaction represents
pND coupling, frequently used in various field-theoretic
models of the low-energypN andNN interactions.3

This coupling is also known to have the above-mention
bad property of involving the unphysical spin-1/2 comp
nents. The contribution of the spin-1/2 sector exhibits its
in the D-exchange scattering amplitudes as a substan
spin-1/2 background in addition to the spin-3/2 resona
behavior around theD mass position.

In the present work, the pathologies of this coupling a
analyzed within the Dirac-Faddeev~DF! quantization frame-
work @18–24#. Thus, first we shall transit to the Hamiltonia
formulation, find the constraints in the phase-space of
theory using the Dirac’s method@18# and check whether the
abovementioned DOF counting is consistent. Secondly,
shall write down the phase-space path integral taking
constraints into account, following a generalization@20# of
Faddeev’s approach@19#. It is usually possible to integrate
out the conjugate momenta and thus obtain
configuration-space path integral. The obtained path inte
can in principle be different from the one we would naive
write down without taking the constraints into account.

2The conventions used throughout this paper are:\5c51, gmn

5diag(1,21,21,21), «012351, g55 ig0g1g2g3 , smn5
1
2 @gm ,

gn#, spinor indices are usually omitted.
3For some applications to thepN system see, e.g., Refs.@2,3#

~effective chiral Lagrangians!, @6# ~relativistic meson-exchange
models!, @7# ~chiral perturbation theory!, see also Ref.@4# for a list
of common problems in the treatment of theD.
© 1998 The American Physical Society02-1
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V. PASCALUTSA PHYSICAL REVIEW D 58 096002
this case the naive Feynman rules~which one would just
‘‘read off’’ the original Lagrangian! are generally not appli-
cable. Applying this procedure to interaction~1!, indeed
leads to a result different from the naive one, see Eq.~30!.
On the way to this result, we shall meet the inconsistencie
the classical level found before using different metho
@2,16,17#.

The question arises whether it is possible in principle
formulate a consistent interaction of the RS field witho
supersymmetry, or coupling to gravity, or both. As will b
argued in Sec. IV, it is generally possible, if the interacti
in question is symmetric under the gauge transformation
the RS field. In particular, we construct the following gaug
invariantpND coupling

L int
~GI!5g«mnab ~]mc̄n!g5gaC]bf1H.c.,

which is shown to admit consistent path-integral quanti
tion. The good properties of this interaction are especia
clearly seen from the tree-levelD-particle exchange ampli
tude, Eq.~49!. It is proportional to the spin-3/2 projectio
operator, and, at the same time, is not singular atp250.
Consequently, the decoupling of the spin-1/2 componen
the RS field is achieved in the manifestly covariant and lo
formulation. The spin-1/2 background is absent.

The paper is organized as follows. In the next section
work out the DF procedure for the free massive spin-
field. This discussion serves mainly as an introduction to
formalism. In Sec. III we perform the Dirac constraint ana
sis of the conventionalpND interaction~1!, notify the pres-
ence of the JS-VZ problem, and obtain the configurati
space path integral of the model. In Sec. IV we argue t
gauge-invariant interactions do not, in general, alter the n
ber of constraints, and consider some lowest in derivati
gauge-invariantpND couplings. The conclusions are formu
lated in Sec. V. Finally, an extension of the Stu¨ckelberg for-
malism to the case of the spin-3/2 field is given in the A
pendix.

II. FREE RARITA-SCHWINGER FIELD

The quantization of the free RS field in Hamiltonian fo
mulation was considered previously in Refs.@25–28#. In this
section we shall briefly recapitulate these consideration
order to summarize the results and set up the framew
Also, the free-field quantization is usually done on Majora
~Hermitian! field, while here we work with the comple
field, hence allowing for the charge. This leads only to min
modifications related to the doubling of the field compone
and corresponding DOF and constraints.

The free Lagrangian of a complex RS fieldcm(x) with
massm is written as follows:

L3/25
1
2 c̄m $smn, ~ i ]”2m!%cn

52 1
2 «mnab c̄mg5ga]bcn

1 1
2 «mnab~]bc̄m!g5gacn

2mc̄msmncn . ~2!

To determine the constraints we follow the path of Dir
@18#. From the definition of conjugate momenta,
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pm†~x!5]L/]ċm~x!, pm~x!5]L/]ċm
† ~x!,

we find the following primary constraints:

u0~x!5p0~x!, u i~x!5p i~x!1 1
2 « i jkg0g5gkc j~x!,

~3!
u0

†~x!5p0
†~x!, u i

†~x!5p i
†~x!1 1

2 « i jkc j
†~x! g0g5gk .

The Hamiltonian,H5*d3xH(x), is then given by

H3/25@c̄ i~« i jkg5g j]k2mc̄ ig ig0!c01H.c.#

1c̄ i~« i jkg0g5]k1ms i j !c j . ~4!

We also introduce the fundamental Poisson brackets~defined
at x05y0)

$cms~x!, pt
n†~y!%P5dm

n dst d3~x2y!, ~5!

here we have written out the spinor indicess,t50, . . . ,3. In
the following we will omit them again. Brackets involvin
only fields or only momenta vanish.4

The primary constraints should now be added to
Hamiltonian through the Lagrange multipliers to form th
total Hamiltoniandensity

HT5H3/21l0u01l iu i1H.c. ~6!

To guarantee the conservation of constraints in time one
quires that they commute with the total Hamiltonian, i.e., t
corresponding Poisson bracket must vanish.

From condition$u i(x), HT%P50, the Lagrange multipli-
ers l i can be determined. Constraintsu i are thus second
class and we may resolve them right away by introducing
Dirac bracket

$A~x!,B~y!%D5$A~x!, B~y!%P

2E d3z1 d3z2 $A~x!,u i
†~z1!%P

3„$u i
†~z1!,u j~z2!%P…

21$u j~z2!,B~y!%P .

~7!

To this end we can find

$u i~x!,u j
†~y!%P52 is i j d

3~x2y!, ~8!

„$u i~x!,u j
†~y!%P…

2152 1
2 ig jg id

3~x2y!, ~9!

hence5

$c i~x!,c j
†~y!%D5 1

2 ig jg id
3~x2y!. ~10!

4From the property of the Poisson bracket,$A,B%P
†

52$B†,A†%P , we have$cm
† (x), pn(y)%P52dm

n d3(x2y).
5One can get to this and some other results in a more efficient

by using the Hamiltonian reduction@29# instead of Dirac’s analysis
~We thank L. D. Faddeev for this remark.!
2-2
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QUANTIZATION OF AN INTERACTING SPIN-3/2 . . . PHYSICAL REVIEW D58 096002
From the condition thatu0 andu0
† commute with the~to-

tal! Hamiltonian we find the secondary constraints,6

u4~x!52 is i j ] ic j1mg ic i ,
~11!

u4
†~x!52 i ] ic j

†s i j 2mc i
†g i .

We may rewrite the Hamiltonian in the following fashion:

H3/25u4
†c01c0

†u41c̄ i~« i jkg0g5 ]k1ms i j !c j . ~12!

Now one can immediately see that the tertial constraintsu5

~and u5
†) arising from $u4(x),HT%D50 @and $u4

†(x),HT%D

50# are linear inc0 (c0
†) with the following proportionality

coefficient:

E d3x$u4~x!,u4
†~y!%D5 3

2 im2. ~13!

Clearly, the conditions thatu5 andu5
† commute with the total

Hamiltonian determine the remaining Lagrange multiplie
l0 andl0

† , thus no more constraints arise. It is also clear t
all the constraints are second class.

We can perform now an exercise in the DOF countin
The field cm and its conjugate momentumpm have 434
516 ~complex! components each, so 32 in total. We ha
634524 ~complex! constraints on them. Hence the numb
of independent components is 8: precisely what is needed
the description of the spin DOF in the phase-space of a m
sive spin-3/2 particle.

In the massless case the situation is somewhat differ
The requirement

$u4~x!,HT%D50

becomes an identity, and nou5 constraints arise. We the
have only five fermionic constraints, whereu i are second
class whileu0 andu4 are first class. The appearance of t
first-class constraints is, of course, related to the fact that
massless Lagrangian is~up to a total derivative! invariant
under the gauge transformation,

cm→cm1]me, ~14!

wheree(x) is a complex fermionic field. To each first-clas
constraint we have to introduce a gauge-fixing conditi
The DOF counting is then also consistent: we are left w
four independent field components in the phase-space w
is appropriate for a massless particle with spin.

Let us now proceed to the path-integral quantization
the system. We concentrate on the massive case. Follo
the generalization of Faddeev’s procedure@19# to the case of
~fermionic! second-class constraints@20–23# we write down
the phase-space path integral in the following form:

6Note the identities:« i jkg5gk52 is i j g0 , 1
2 i« i jkg jgk5g5g0g i ,

1
2 « i jk« lmng jgmgkgn52s i l .
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Z5E Dcm Dcm
† Dpm Dpm† ~deti$u,u%Pi !1/2

3 )
n50

5

d~un!d~un
†!

3expH i E d4x@pm†ċm1ċm
† pm2H3/2#J , ~15!

wherei$u,u%Pi represents the matrix of Poisson brackets
constraints. In our case it is7

S 0 i$u~x!,u†~y!%Pi

i$u†~x!,u~y!%Pi 0 D ~16!

where

i$u~x!,u†~y!%Pi

5S 0 0 0 3
2 im2

0 2 is i j G i $u i ,u5
†%

0 G j 0 $u4 ,u5
†%

3
2 im2 $u5 ,u j

†% $u5 ,u4
†% $u5 ,u5

†%

D d3~x2y!,

~17!
G i[ is i j ] j1mg i .

The calculation of the determinant and integration overp ’s
produce the following result:

Z5E Dcm Dcm
† det@~ ig i] i1

3
4 m! d3~x2y!#

3expS i E L3/2D . ~18!

The determinant is field independent and can be dropped
have kept it just for further comparison to the interacti
case. Having obtained path integral~18! we complete the DF
quantization of the free massive spin-3/2 field and conclu
that constraints do not modify the original Lagrangian, hen
the ‘‘naive’’ Feynman rules apply.

We will not treat separately the massless case~this is done
in details in Refs.@25,26#!. Instead, we may apply an analo
of the Stückelberg mechanism@31#, which allows us to treat
the massless and massive case on the same footing.
analysis is done in the Appendix.

III. THE pND-COUPLING MODEL

In this section we apply the Dirac-Faddeev procedure
quantize thepND phenomenological interaction discuss

7Note that nowhere in our calculation do we need to know theu5

constraint fully. It suffices to know thatu5 is linear inc0 with the
already determined coefficient32 im2. This observation has bee
made also in Ref.@30#.
2-3
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V. PASCALUTSA PHYSICAL REVIEW D 58 096002
in the Introduction. The model is given by the followin
Lagrangian:

L5L01L1/21L3/21Lint ,

L05 1
2 ]mf ]mf2 1

2 m2f2, ~19!

L1/25C̄~ i ]”2M !C

5 1
2 i C̄gm]mC2 1

2 i ~]mC̄!gmC2MC̄C,

whereLint andL3/2 are defined in Eqs.~1! and ~2!, respec-
tively.

We follow precisely the same steps as in the preced
section. In addition topm we define

P~x!5]L/]ḟ~x!,
~20!

P†~x!5]L/]Ċ~x!, P~x!5]L/]Ċ†~x!,

and find the ‘‘velocity’’ ḟ,

ḟ~x!5P~x!2F@C~x!,cm~x!#,
~21!

F@C,cm#[g~11a!c̄0C2gac̄ ig ig0C1H.c.,

and the following primary constraints@in addition to Eq.
~3!#:

x~x!5P~x!2 1
2 iC~x!, x†~x!5P†~x!1 1

2 iC†~x!.
~22!

The model Hamiltonian is given by

H5H01H1/21H3/21Hint ,

H05 1
2 ~P22F2!1 1

2 ~] if!21 1
2 m2f2,

~23!
H1/25C̄~ ig i] i1M !C,

Hint52Lint52~P2F ! F1g@ac̄0g0g i] if

1c̄ i~d i j 2ag ig j !] jf#C1H.c.

with H3/2 given in Eq.~4!.
We postulate the fundamental Poisson brackets

$f~x!,P~y!%P5d3~x2y!,

$Cs~x!,Pt
†~y!%P5dst d3~x2y!, ~24!

$cms~x!, pt
n†~y!%P5dm

n dst d3~x2y!;

all the other brackets vanish. Note that the brackets are s
metric in the case of fermionic variables~such as
C,P,cm ,pm) and antisymmetric in the case of bosonic va
ables~such asf,P,H), they are also antisymmetric in th
mixed case.

Next we resolve the second-class constraintsu i andx by
introducing corresponding Dirac brackets, and note
09600
g

m-

$C~x!,C†~y!%D52 id3~x2y! ~25!

while $c i(x),c j
†(y)%D is given by Eq.~10!.

A crucial point here is that the condition of conservati
of u0 constraint leads to a constraint which in general co
tainsc0 . Namely,

u452 is i j ] ic j1mg ic i2agg iC] if

1g~11a! ~P2F ! g0C ~26!

and similar foru4
† . It is F that has an explicit dependence o

c0 as given by Eq.~21!.
As we saw in the previous section, the constraint conta

ing c0 is always the last one in the chain of constrain
Hence foraÞ21, u4 is the last constraint, and we have the
5 (34) constraints, all of them being second class. Count
the number of DOF for this case we certainly find an exc
of them, because we are one constraint too short as com
to the free case where the DOF counting is built in correc
Thus, we conclude that foraÞ21 thepND interaction con-
sidered here isinconsistentwith the free theory construction
The same conclusion has been drawn by Nath, Etemadi,
Kimel @2# based on a constraint analysis in Lagrangian f
mulation. The choicea521 is thus preferable and we con
tinue the analysis for this case only.

For a521, theu4 constraints read

u4~x!52 is i j ] ic j1mg ic i1gg iC] if,
~27!

u4
†~x!52 i ] ic j

†s i j 2mc i
†g i2gC†g i] if.

As in the free case, constraintsu5 and u5
† are linearly pro-

portional toc0. Now only with a different coefficient

R~x![E d3y $u4~x!,u4
†~y!%D5 i @ 3

2 m22g2~] if!2#.

~28!

At this point we hit another problem. The coefficient ma
vanish when3

2 m25g2(] if)2. Then, either theu4 constraints
are first class, or we will find some further second-class c
straints. In any case the DOF counting will again be differe
from that of the free theory. In the massless case the situa
is even worse since the problem occurs for any value
g2(] if)2.

It is interesting to note that the same problem arises in
constraint analysis of the minimal coupling of the RS field
the external electromagnetic field@14,15#. There it was iden-
tified with the JS-VZ problem. On the other hand, Hag
@16# and Singh@17# revealed the JS and VZ problems in th
pND coupling being considered. Their analysis is done
lines with the original treatment@11,12# and thus is rather
different from ours; nevertheless, the factor giving rise to
JS and VZ problem in their works is preciselyR(x) of Eq.
~28!. Moreover, we can easily compute the field commu
tors taking into accountu4 constraints~i.e., the second stag
Dirac bracket!, and find that the corresponding quantu
commutators are not positive definite, becauseR is not, in
line with Hagen’s conclusion. We can therefore confirm t
2-4
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observation of@13,14# that the JS-VZ problem appears itse
in the violation of constraints.

To proceed with the quantization let us assumeR(x)Þ0
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~although note that this is not a Lorentz-invariant conditio!,
and write down the path integral. According to Eq.~15! we
need
~deti$u,u%Pi !1/25detS 0 0 0 R 0

0 2 is i j G i $u i ,u5
†% 0

0 G j 0 $u4 ,u5
†% gg i] if

R $u5 ,u j
†% $u5 ,u4

†% $u5 ,u5
†% $u5 ,x†%

0 0 gg i] if $x,u5
†% 2 i

D d3~x2y!. ~29!
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Simplifying this determinant and carrying out the integrati
over the conjugate momenta we obtain

Z5E Dcm Dcm
† DC DC†Df

3detF S ig i] i1
3
4 m2

g2

2m
~] if!2D d3~x2y!G

3expS i E LD . ~30!

Thus, our final path integral differs from the naive path
tegral by the nontrivial determinant entering the measure

Noncovariant field-dependent determinants do often oc
in the Hamiltonian path-integral quantization of systems w
second-class constraints, see Refs.@33,34#. Usually their
contributions to the Green functions is canceled by the
gular terms coming from the time-ordering operators, so t
resulting Green functions are covariant. It would be intere
ing to see whether this mechanism occurs also in the cas
Eq. ~30! or, perhaps, there is indeed some breaking of L
entz symmetry suggested by the presence of the JS-VZ p
lem.

IV. GAUGE-INVARIANT COUPLINGS

In the previous section we have seen that the conventi
pND interaction suffers from inconsistencies related to
violation of constraints, in particular the JS-VZ problem. O
the other hand, it is intuitively clear that~i! gauge-invariant
couplings are generally consistent with the DOF counti
Indeed, the number of constraints is related to the numbe
local symmetries of the Lagrangian, while gauge-invari
couplings do not destroy the symmetry of the free RS
grangian where the DOF counting is correct. We can pr
statement~i! more rigorously for the linear couplings of th
RS field, i.e., the case when the interaction Lagrangian
given by

Llinear5cm
† Jm1H.c., ~31!

Jm is independent ofcm The proof proceeds as follows†we
basically follow the proof of Eq.~8.2.5! in Ref. @32#‡.
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If other fields do not change under the gauge transform
tion, we can concentrate just on thecm dependent part of the
Lagrangian, which is

L5L3/21Llinear.

The gauge invariance of the massless Lagrangian then
plies

]mJm50. ~32!

Determining the constraints, we find the usual primary co
straints

u05
]L

]~]0c0!
~33!

and u i of Eq. ~3!. The u i constraints do not produce an
secondary constraints, while requiring time independence
u0 gives us the usual

u45]0u0 . ~34!

Now, using the Euler-Lagrange field equations and Eq.~32!,
we obtain

u5[]0u45msmn]mcn . ~35!

Thus, only the mass term can affect the number of c
straints, which proves~i! for the case of linear coupling.

According to~i! it seems promising to search for consi
tent pND couplings among the gauge-invariant ones. T
simplest way to construct those is to couple the RS field
an explicitly conserved current.~Actually, the only other
way we can see is to allow the pion and the nucleon fi
also transform under the gauge transformation, similarly
how they transform under the photon gauge transformat
This, however, would obviously require a supersymme
realization. Although an interesting possibility, here we
strict ourselves to nonsupersymmetric realizations.!

The lowest in derivatives explicitly gauge-invariantpND
interaction is given by the following Lagrangian:

Lint5g~]mc̄n!smnCf1H.c. ~36!
2-5
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V. PASCALUTSA PHYSICAL REVIEW D 58 096002
However, this interaction is in some sense trivial: it describ
the coupling of the nucleon and pion to]•c andg•c, i.e.,
the spin-1/2 sector of theD field. Furthermore, the corre
sponding tree-level Feynman amplitude for thepN scatter-
ing through a virtualD exchange

M ~p!5Ga~p!Sab~p!Gb~p!, ~37!

wherep is four-momentum of theD, Ga(p) andSab(p) are
the naive Feynman rules for the vertex and the RS propa
tor, respectively,

Ga~p!5gsampm , ~38!

Sab~p!5
p”1m

p22m2Fgab2 1
3 gagb

2
1

3m2
~p”gapb1pagbp” !G , ~39!

vanishes exactly:M (p)50, for all p. Having such a classi
cally ‘‘invisible’’ D is maybe interesting in some scenario
but certainly not in the applications we are interested in he
We thus should conclude that thepND interaction~36! in-
volves a correct number ofD ’s field components, however
they have wrong spin representing parts of the spin-1/2
tor of the RS field, consequently this interaction can not
scribe a physical coupling to the spin-3/2 particle.

The next lowest in derivatives gauge-invariant interact
is written down in the Introduction, and reads as follows:

Lint5g«mnab ~]mc̄n!g5gaC]bf1H.c. ~40!

For this interaction the tree-level amplitude does not van
Moreover, the result is not sensitive to 1/m2 term of the RS
propagator, thus a well-defined massless limit is guarant
We shall discuss the tree-level calculation in more detail,
first let us perform the DF quantization of this interaction

To treat the massive and massless case simultaneous
introduce the Stu¨ckelberg spinorj(x) described in the Ap-
pendix. Our model Lagrangian is thus defined by Eqs.~19!,
~A1!, and~40!.

The model has the following primary and secondary c
straints~the Hermitian conjugates are omitted!:

u i5p i2 is i j ~
1
2 c j1gC] jf!,

uS5h2mg ic i ,

x5P2 1
2 iC, ~41!

u05p0 ,

u452 is i j ] ic j1mg ic i1mg i] ij2 igs i j ] iC] jf,

and the Hamiltonian density given by
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H5 1
2 ~P2F !21 1

2 ~] if!21 1
2 ~mf!21C̄~ ig i] i1M !C

1@c0
†u41 1

2 c̄ i~« i jk g0g5 ]k1ms i j !c j1mc̄ is i j ] jj

2g« i jk ~] ic j
†!g5C]kf1H.c.#, ~42!

where F52 ig(] ic j
†)s i j C1H.c., andu4 is given in Eq.

~41!. Once again, we introduce the Dirac bracket with
spect to the second-class constraints (u i , uS , x) and find that
the field commutators remain to be given by Eqs.~A8!, ~25!.

Now, as can be shown by a direct computation, but a
follows from the proof given in the beginning of this sectio
the secondary constraint,u4 , commutes with the tota
Hamiltonian. Hence, constraints~41! are all constraints in
the model.

The construction of the path integral goes in exactly
same way as discussed in the Appendix. Although in t
case the matrix of the second-class constraint Poisson br
ets

i$u~2!,u†~2!%Pi52S is i j mg i igs ik]kf

mg j 0 0

igs jk]kf 0 i
D

3d3~x2y!, ~43!

is field dependent, its determinant is not,

deti$u~2!,u†~2!%Pi5det@3im2d3~x2y!#, ~44!

and can be neglected.
Taking the Coulomb gauge, integrating out the mome

and covarianizing the measure we obtain the followi
configuration-space path integral of the model:

Z5E Dcm Dcm
† DC DC†Df Dj Dj†d~g•c!

3d~c†
•g! expS i E LD . ~45!

Another important simplification which occurs here due
the gauge symmetry is the decoupling of the Stu¨ckelberg
spinor. We thus may easily integrate it out as well, obtain

Z5E Dcm Dcm
† DC DC†Dfd~g•c!d~c†

•g!

3d~]•c!d~]•c†!expS i E LD , ~46!

where the free spin-3/2 Lagrangian is now given by Eq.~2!,
while the rest of the terms inL remain unchanged. Note tha
starting from the transverse gauge we would obtain the s
expression.

Let us now reconstruct the Feynman rules for the
field. The delta functions in our final path integral clear
indicate that the Green functions are independent of the s
1/2 sector ofcm . We can use for instance the followin
‘‘Feynman gauge’’ expression for the spin-3/2 propagato
2-6
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Sab~p!5
1

p”2m
~gab2 1

3 gagb!. ~47!

The expression for the vertex reads

Gm~k,p!5 ig«mnabpng5gakb , ~48!

wherek is pion momentum, whilep can be chosen to repre
sent the momentum of either theD or the nucleon.

Using these rules we can easily compute the tree-le
amplitude for thepN scattering through thes- or u-channel
D exchange~forgetting about the isospin!

M ~k8,k;p!5Ga~k8,p! Sab~p! Gb~k,p!

5
g2

p”2m
p2 Pab

3/2~p! k8akb, ~49!

where

Pab
3/2~p!5gab2 1

3 gagb2
1

3p2
~p”gapb1pagbp” !, ~50!

is the spin-3/2 projection operator. This operator has
well-known property of projecting on the spin-3/2 states a
is a clear signature of the spin-3/2 components. Our am
tude is thus independent of the spin-1/2 sector of the
field, which is certainly the result we desired to obtain.

The spin-3/2 projection operator was used previously
some phenomenological models although in a ratherad hoc
way, such as, for example, replacing the tensor part of the
propagator by the projection operator, etc., see, e.g., re
ences cited in@4#. However, in these models problems ari
due to the 1/p2 nonlocality of the projection operator. In Eq
~49! this problem is obviously not present, which is not su
prising since we depart from a local Lagrangian.

It may look that the JS-VZ problem for coupling~40! is
avoided just because we made use of the Stu¨ckelberg mecha-
nism: u4 is then guaranteed to be the first-class constr
and the problem discussed below Eq.~28! cannot occur. Sup-
pose, however, we do not introduce the Stu¨ckelberg field. In
this case,u4 is given by Eq.~41! with j50, and the com-
mutator ofu4 constraints is given by Eq.~13!, i.e., is exactly
the same as in the free theory. Thus, the JS-VZ problem d
not occur here, independently of whether the Stu¨ckelberg
field is used or not.

On the other hand, suppose we would like to avoid
JS-VZ problem in the conventional coupling by using t
Stückelberg mechanism. Then, indeed, the correspondingu4
constraint becomes first class, hence its commutator vani
instead of being field-dependent as in Eq.~28!. In that case,
however, the Stu¨ckelberg field does not ever decouple a
the excess of DOF becomes thus explicit, leading again
the unitarity problem.

V. SUMMARY AND CONCLUSION

The Dirac-Faddeev quantization method is very w
suited for analyzing the interacting spin-3/2 field, since
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provides a straightforward procedure where the control o
the degrees of freedom can be done in a simple transpa
way. We have applied this procedure to the conventio
pND coupling, Eq.~1!, and find this coupling has a numbe
of problems precisely due to the coupling to extra DOF. T
goes in line with some previous analyses@2,16,17#, as well
as with the common knowledge that this coupling alwa
produces unphysical spin-1/2 backgrounds in addition to
spin-3/2 contribution. For the choicea521, the problem is
not so pronounced, nevertheless it is present and can b
lated to the well-known JS-VZ problem. Furthermore, w
argue that for this choice the ‘‘naive’’ Feynman rules may
unapplicable since in principle there are contributions fro
the determinant in the path integral Eq.~30!.

Further, we have suggested to use couplings which
invariant under the gauge transformation of the RS field
~14!. As has been conjectured and partially proved in S
IV, these couplings are generally consistent with the D
counting~unitarity!. We have considered two lowest in de
rivatives gauge-invariantpND couplings. The first one de
scribes the coupling to purely the spin-1/2 sector of the
field, and we abandon its further analysis for this reason.
second coupling, Eq.~40!, describes the coupling to purel
spin-3/2 sector of the RS field. This conclusion is deriv
both nonperturbatively from the resulting path integral~46!,
and perturbatively from the calculation of the tree-level a
plitude, Eq.~49!. The gauge-invariant coupling Eq.~40! is
thus a good candidate for a consistent cubic interaction
scalar, spinor and vector-spinor fields in flat Minkows
space time.

Some other consistent interactions of the spin-3/2 fi
can be immediately written down knowing that they shou
be restricted by gauge invariance. For instance,

LpDD5gpDDc̄mg5G̃mn]nf, ~51!

LgND5ggNDC̄Qab,mnGabFmn1H.c., ~52!

whereFmn is the electromagnetic field strength,Q is a con-
stant tensor, e.g.,

Qab,mn5gamgbn1a1gamgbgn1a2«mnab

1derivative terms, ~53!

and, finally,Gmn5]mcn2]ncm , G̃mn5«mnab]acb .
An acceptablegDD interaction can also be easily foun

as long as the coupling to the photon is ‘‘anomalous,’’ i.
occurs only throughFmn. On the other hand, to write down
consistent minimal coupling is not a trivial task since it
then difficult to satisfy both photon and spin-3/2 gauge sy
metries at the same time. In this case, as well as in o
cases when one needs to set up lower-derivative interacti
supersymmetry might be the only option.
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APPENDIX: STÜCKELBERG MECHANISM
FOR THE SPIN-3/2 FIELD

Our procedure goes in full analogy to the massive spi
case ~the Proca model!. We introduce a ‘‘Stu¨ckelberg
spinor’’ j(x) replacingcm by cm1]mj in the free Lagrang-
ian ~2!. The Lagrangian reads then as follows:

L3/25
1
2 c̄m $smn, ~ i ]”2m!% cn

2m~]mj̄ !smncn2mc̄msmn]mj, ~A1!

and it is manifestly invariant under the gauge transformat

cm→cm1]me,
~A2!

j→j2e.

We define the conjugate momenta8

pm†~x!5]L/]ċm~x!, h†~x!5]L/]j̇~x!, ~A3!

and fundamental Poisson brackets

$cmt~x!, ps
n†~y!%P5dm

n dstd
3~x2y!,

~A4!
$jt~x!, hs

†~y!%P5dstd
3~x2y!,

wheret,s50, . . . ,3 are thespinor indices. We obtain the
the following primary constraints:

u0~x!5p0~x!,

u i~x!5p i~x!2
i

2
s i j c j~x!, ~A5!

uS~x!5h~x!2mg ic i~x!,

and the Hamiltonian

H3/25E d3xH3/2,

~A6!
H3/25c0

†u41 1
2 c̄ i~« i jk g0g5 ]k1ms i j !c j

1mc̄ is i j ] jj1H.c.,

whereu4 is the only secondary constraint, given by

8We shall omit similar formulas for the Hermitian-conjugate fiel
where possible.
09600
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n

u4~x!52 is i j ] ic j~x!1mg i@c i~x!1] ij~x!#. ~A7!

We introduce the Dirac bracket with respect to t
second-class constraintsu i and uS . Using this bracket the
field commutators take the following form:

$c i~x!,c j
†~y!%D52 i ~d i j 1

1
3 g ig j !d

3~x2y!,

$j~x!,j†~y!%D52 i
2

3m2
d3~x2y!, ~A8!

$j~x!,c i
†~y!%D5$c i~x!,j†~y!%D5

1

3m
g id

3~x2y!.

We find then that the secondary constraint commutes w
the Hamiltonian, i.e.,

$u4 ,H3/2%D50, ~A9!

thus no further constraints arise. We also conclude thatu0
andu4 are the first-class constraints.

Let us denote the first-class constraints asu (1)

5(u0 ,u4), the corresponding gauge-fixing conditions asw
5(w1 ,w2), and the second-class constraints asu (2)

5(u i ,uS). Then, assumingw ’s commute among themselve
the path integral can be put in the following form~see, e.g.,
@22,23#!:

Z5E Dcm Dcm
† Dj Dj†Dpm Dpm†Dh Dh†

3deti$u~1!,w%Di ~deti$u~2!,u~2!%Pi !1/2

3) d~w!d~w†!d~u!d~u†!

3expH i E d4x@pm†ċm1ċm
† pm1h†j̇1 j̇†h2H3/2#J .

~A10!

In our case deti$u (2),u (2)%Pi is just a constant and can b
dropped, since the path integral is defined up to a normal
tion factor.

Clearly one of the gauge-fixing conditions must be p
portional toc0 in order to match theu0 constraint. We take
w15c0 , then forw2 there is a number of possibilities, e.g

w25g ic i ~Coulomb gauge!,

w25] ic i ~transverse gauge!,

w25c3 ~axial gauge!,

w25j ~unitary gauge!.

Let us choose the Coulomb gauge. Integrating over the c
jugate momenta we then arrive at
2-8
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Z5E Dcm Dcm
† Dj Dj†~det@g i] i # !2

3d~g ic i !d~c i
†g i !e

i *L3/2. ~A11!

Now, having the gauge symmetry at our disposal, we m
use the Faddeev-Popov trick@19,24,35# to covarianize the
measure. We thus obtain the path integral in a covar
gauge,

Z5E Dcm Dcm
† Dj Dj†~det@]” # !2

3d~g•c!d~c†
•g!exp~ i *L3/2!. ~A12!
.

ck

ay

ys
-

,

nd

E
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Starting from the transverse gauge we would arrive at

Z5E Dcm Dcm
† Dj Dj†~det@]m]m#!2

3d~]•c!d~]•c†!expS i E L3/2D . ~A13!

In these gauges the massless limit can be obtained dire
On the other hand, taking the unitary gauge and integra
over j ’s gives us back Eq.~18!.
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