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Quantization of the free and interacting Rarita-Schwinger field is considered using the Hamiltonian path-
integral formulation. The particular interaction we study in detail is #A coupling used in the phenom-
enology of the pion-nucleon and nucleon-nucleon systems. Within the Dirac constraint analysis, we show that
there is an excess of degrees of freedom in the model, as well as the inconsistency related to the Johnson-
Sudarshan-Velo-Zwanzinger problem. It is further suggested that couplings invariant under the gauge trans-
formation of the Rarita-Schwinger field are generally free from these inconsistencies. We then construct and
briefly analyze some lowest in derivatives gauge-invariaNtA couplings.[S0556-282(98)01919-5

PACS numbsefs): 11.10.Ef, 11.15-q, 13.75.Cs, 13.75.Gx

I. INTRODUCTION lems. More recently, it was shown that JS and VZ problems
have a common origifil 3], and furthermore they are related

A covariant description of the interacting spin-3/2 field is to the mentioned problem of the constraint violatjad,15.
famous for its various problems and paradoxes. Presently, All these problems are knowf2,16,17 to be present for
supergravity is the only example of a local field theory whichthe coupling of a massive RS fielfi,(x) to a spinor¥(x)
includes a massless spin-3/2 figlgtavitinog in a consistent and a (pseudo} scalar ¢(x) described by the following
way, for a review see Refl]. For the particle phenomenol- Lagrangiarr.
ogy, however, it would be desirable to construct a consistent _
description in a flat space. Such a description is needed, for Lin=0¢,.(¢""+ay*y")¥d,o+H.c., @
example, for the treatment of the spin-3/2 baryon resonance
such as thé\ (1232) isobar, in low-energy hadron scattering
[2—7]. Another interesting application is the search for the

spin-3/2 leptong8]. +NA coupli - ) . X
! . . o pling, frequently used in various field-theoretical
The major problems in the locahigher-spin field theory ‘models of the low-energyN andNN interactions’

are closely related to the presence of unphysical lower-spin s coupling is also known to have the above-mentioned
components in the covariant representation of the field. Morgaq property of involving the unphysical spin-1/2 compo-
specifically, a field with a given spis=1, in addition to the  npents. The contribution of the spin-1/2 sector exhibits itself
physical components, necessarily contains components @§ the A-exchange scattering amplitudes as a substantial
spin (s—1), (s—2), etc. For instance, in the Rarita- spjn-1/2 background in addition to the spin-3/2 resonance
Schwinger(RS) formalism [10] adopted in this work, the pehavior around tha mass position.
spin—3/2 field is represented by a 16 component vector—.spilnor In the present work, the pathologies of this coupling are
¢, while only 4 components are needed for the descriptiomnalyzed within the Dirac-Fadde¢®F) quantization frame-
of a massive spin-3/2 particle and thus the rest of the comyork [18—24. Thus, first we shall transit to the Hamiltonian
ponents should be attributed to the lower-spin sector. Thegrmulation, find the constraints in the phase-space of the
free action of such theories is then constructed in such a wagheory using the Dirac’s methdd 8] and check whether the
that at the level of the equations of motions the constraintgpovementioned DOF counting is consistent. Secondly, we
are produced reducing the number of independent compashall write down the phase-space path integral taking the
nents to the necessary val(equal to Z+1 for a massive  constraints into account, following a generalizati@®] of
and 2 for a massless particle with spin Faddeev's approacH9]. It is usually possible to integrate

In the interacting case the situation is generally moregyt the conjugate momenta and thus obtain the
complex, since all the components may couple in a nontriviakonfiguration-space path integral. The obtained path integral
way. The constraints are then altered, moreover their amouéan in principle be different from the one we would naively

may change. In the latter case, i.e., if the number of conyyrite down without taking the constraints into account. In
straints in the free and interacting theory is different, one can

conclude that a wrong number of degrees of freedD@F)

is interacting, and therefore, this form of interaction is physi-
cally unacceptable. Another type of inconsistency which 0123 o I
may often arise is the presence of the famous Johnson-41a9(1~1.=1,=1), e™%=1, ys=ivoy17273, 0u,=2[Vsu,

_ : ) v,1, spinor indices are usually omitted.
SudarshartJ§ [11], and Velo-ZwanzingetvZ) [12] prob SFor some applications to theN system see, e.g., Refi2,3]

(effective chiral Lagrangians [6] (relativistic meson-exchange
models, [7] (chiral perturbation theoby see also Ref4] for a list
For nonlocal formulations s€@]. of common problems in the treatment of the

\?\Ihereg is the coupling constant, and is related to the
off-shell parameter as follows:a= —z— 3, cf. Ref.[2]. Up
to the isospin complications, this interaction represents the

2The conventions used throughout this paper arec=1, Ouv
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this case the naive Feynman ruleshich one would just wtiy) — : By — ot
“read off” the original Lagrangiam are generally not appli- T = L1000, w0 =L, (x),
cable. Applying this procedure to interactidd), indeed
leads to a result different from the naive one, see BQ).
On the way to this result, we shall meet the inconsistencies at g (x)=ry(x),  6,(x)=m(X)+ & Yo¥s v i (X),
the classical level found before using different methods ) !

we find the following primary constraints:

[2,16,11. 0=, 6100= 100+ beue 00 Yorsve
The question arises whether it is possible in principle to ° SR ! 221k 075 7k

formulate a consistent interaction of the RS field without HamiltonianH = [d3x H(x), is then given by

supersymmetry, or coupling to gravity, or both. As will be ’ '

argued in Sec. IV, it is generally possible, if the interaction S P

in question is symmetric under the gauge transformation of Haz=Li(&ijk s Y o= Mibi Vi vo) Yo+ H.C]

the RS field. In particular, we construct the following gauge- - N

invariant7NA coupling T ileijk Yo st Maij) @
L8V ggrras (%%) Ys¥aWdgh+H.C. \5/1\'[/?( a_ls; ;ntroduce the fundamental Poisson bracidegned

0—JYo

which is shown to admit consistent path-integral quantiza- .

tion. The good properties of this interaction are especially {.0(), T/ (Y)}p=8},8,, 8%(x—Y), 5)

clearly seen from the tree-levél-particle exchange ampli- ) S

tude, Eq.(49). It is proportional to the spin-3/2 projection here we have written out the spinor indieesg=0, ... ,3. In

operator, and, at the same time, is not singulapat0. the following we will omit them again. Brackets involving

Consequently, the decoupling of the spin-1/2 component oénly fields or only momenta vanish.

the RS field is achieved in the manifestly covariant and local The primary constraints should now be added to the

formulation. The spin-1/2 background is absent. Hamiltonian through the Lagrange multipliers to form the
The paper is organized as follows. In the next section weotal Hamiltoniandensity

work out the DF procedure for the free massive spin-3/2

field. This discussion serves mainly as an introduction to the Hy="Hzppt Ngbp+\i6;+H.cC. (6)

formalism. In Sec. lll we perform the Dirac constraint analy-

sis of the conventionarNA interaction(1), notify the pres- To guarantee the conservation of constraints in time one re-

ence of the JS-VZ problem, and obtain the configuration-quires that they commute with the total Hamiltonian, i.e., the

space path integral of the model. In Sec. IV we argue thatorresponding Poisson bracket must vanish.

gauge-invariant interactions do not, in general, alter the num- From condition{ ¢;(x), Ht}p=0, the Lagrange multipli-

ber of constraints, and consider some lowest in derivativegrs \; can be determined. Constraing are thus second

gauge-invariantrNA couplings. The conclusions are formu- class and we may resolve them right away by introducing the
lated in Sec. V. Finally, an extension of the &talberg for-  Dirac bracket
malism to the case of the spin-3/2 field is given in the Ap-

pendix. {A),B(Y)}o={A(X), B(Y)}p
Il. FREE RARITA-SCHWINGER FIELD

_f d3z; B3z, {A(X), 6] (z1)}p
The quantization of the free RS field in Hamiltonian for-

mulation was considered previously in Ref285-28. In this X ({ 9T(21),0'(22)}p)_1{0'(zz),B(y)}p-
section we shall briefly recapitulate these considerations in ' ! !
order to summarize the results and set up the framework. (7

Also, the free-field quantization is usually done on Majoran
(Hermitian field, while here we work with the complex
field, hence allowing for the charge. This leads only to minor

aI'o this end we can find

i =—ig. _
modifications related to the doubling of the field components 16:(x), 0 (¥)}p =~y (x=y), ®
and corresponding DOF and constraints. + 1 1. 3
The free Lagrangian of a complex RS fielg,(x) with A6i(x),0;(Y)}p) "= —z17;%6°(X~y), ©

massm is written as follows:
L= %Zﬂ {o?, (ib—m)}y,

== %SMVQ'B {//M’)/Syaaﬁwv

+3emrP(ggy,
2 (Opd) ¥sYathy “From the property of the Poisson bracketA,B}},
—my, i, 2) =5—{BT,A*}p, we have{y(x), 7' (Y)}p=—8), 8°(x=y).
One can get to this and some other results in a more efficient way
To determine the constraints we follow the path of Diracby using the Hamiltonian reductid29] instead of Dirac’s analysis.
[18]. From the definition of conjugate momenta, (We thank L. D. Faddeev for this remark.

henceé

{60, 4] (V) }o=317%8(x—y). (10)
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From the condition tha, and 6 commute with theto- + ‘ 1
tal) Hamiltonian we find the secondary constraifts, Z:f Dy, Dy, Dm# D" (def|{ 6, 6} pl|)
04(X)=—l0jjd i+ my;i >
(11 x 11 a6 o(67)
O4(x)=—id, ¢jTUij —myly;.
o Y T AT
We may rewrite the Hamiltonian in the following fashion: ><exp{|f dX[ 7, + o, T H3/ﬂ]’ (15

Happ= Ohiho+ ¢894+%(8”k7075 detmay) g (12) where||{ 6, 6}p| represents the matrix of Poisson brackets of
constraints. In our case it’is

Now one can immediately see that the tertial constrafigts

4
(and %) arising from {6,4(x),H7}p=0 [and {6}(x),H}p ( 0 I£60x), 0 (y)}P) (16
=0] are linear ing;, () with the following proportionality I{67(x), 6(y)}ell 0
coefficient:
where
f d*x{04(x), 63(y)}p=3im?, 13 [{60x), 6" (y)}el
Clearly, the conditions thats and 81 commute with the total 0 0 0 §im?
Hamiltonian determine the remaining Lagrange multipliers 0 —io; T {6,,6%}
t . . . ij i Y5

Ao andX\ g, thus no more constraints arise. It is also clear that = T B(x—y),
all the constraints are second class. 0 y 0 {04,065}

We can perform now an exercise in the DOF counting. 3im2 {65,607} {65,600} {65,605

The field ¢, and its conjugate momentum* have 4x4
=16 (complex components each, so 32 in total. We have
6Xx 4=24 (compleX constraints on them. Hence the number
of independent components is 8: precisely what is needed fof, caiculation of the determinant and integration osés
the description of the spin DOF in the phase-space of a MaSsioduce the following result:
sive spin-3/2 particle.

In the massless case the situation is somewhat different.
The requirement Z=J Dy, Dy, def (i 10+ §m) (x—y)]

Hrlp=0
{64(x),H+}p xex;{ i f [,3,2). (19

becomes an identity, and n constraints arise. We then

have only five fermionic constraints, whetg are second The determinant is field independent and can be dropped, we
class while¢, and 6, are first class. The appearance of thehave kept it just for further comparison to the interacting
first-class constraints is, of course, related to the fact that thgase. Having obtained path integf&8) we complete the DF
massless Lagrangian {®ip to a total derivativeinvariant  quantization of the free massive spin-3/2 field and conclude

| 17)
FiEIUij&j-l—myi .

under the gauge transformation, that constraints do not modify the original Lagrangian, hence
the “naive” Feynman rules apply.
b=, +d,6 (14 We will not treat separately the massless désis is done

in details in Refs[25,26)). Instead, we may apply an analog
wheree(x) is a complex fermionic field. To each first-class of the Stickelberg mechanisiB1], which allows us to treat
constraint we have to introduce a gauge-fixing conditionthe massless and massive case on the same footing. This
The DOF counting is then also consistent: we are left withanalysis is done in the Appendix.
four independent field components in the phase-space which
is appropriate for a massless particle with spin.

Let us now proceed to the path-integral quantization of
the system. We concentrate on the massive case. Following In this section we apply the Dirac-Faddeev procedure to
the generalization of Faddeev's procedLi8] to the case of quantize therNA phenomenological interaction discussed
(fermionic) second-class constrair[30—23 we write down
the phase-space path integral in the following form:

lll. THE #NA-COUPLING MODEL

"Note that nowhere in our calculation do we need to knowéhe
constraint fully. It suffices to know thats is linear in ¢, with the
5Note the identities:e;j ys k= —i0%; Yo, %isijkyj Y= Y5Y0Yi already determined coefficier%imz. This observation has been
%Sijkelmn')’j YmYkYn= — Oj| - made also in Rei[30]
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in the Introduction. The model is given by the following

Lagrangian:

L= Lo+ Lyppt Lappt Lines

’CO:%&M(ﬁ &M¢_%M2¢21 (19)
Lip="(ib—M)¥
=3iWy,0,V—1i(0,V)y, Y —MVV,

where L, and L3/, are defined in Eq91) and(2), respec-
tively.

PHYSICAL REVIEW D 58 096002

{¥(x), ¥(y)}p=—i8%(x—y)

while {(x), %] (y)}p is given by Eq.(10).

A crucial point here is that the condition of conservation
of 6, constraint leads to a constraint which in general con-
tains . Namely,

(25

O,=—i0ijd g+ my;hi—agy, Vo, ¢

+g(l+a) (P—F) yo¥ (26)

and similar forafl. It is F that has an explicit dependence on
o as given by Eq(21).

We follow precisely the same steps as in the preceding AS We saw in the previous section, the constraint contain-

section. In addition tar* we define

P(X)=aLlde(X),

. . (20)
Y (x)=aLlo¥(x), TI(x)=adLlo¥T(x),
and find the “velocity” ¢,
B(x)=P(x) ~F[W(x),,(x)],
(21)

FIP,¢,]=0(1+a) ¥ —gay,y vV +H.c.,

and the following primary constraintdn addition to Eq.

3]

XO)=I(x) =3P (x), x'0=T"x)+zi¥"(x).

(22)
The model Hamiltonian is given by
H=Ho+Hyo+Hzp+ Hint,
Ho=3(P?—F?)+3(0i¢)*+ 3 u°¢7,
(23)

Hap="P(iyd+M)¥,
Hin=— Lin=—(P—F) F+glaoyoyidi
+ (8 —ayy))dj¢] ¥ +H.c.

with Hs,, given in Eq.(4).
We postulate the fundamental Poisson brackets

{d(x),P(y)}p=3(x—y),
(¥, (x), I (y)}p=8,, 3(x—Y),

{0,0(X), T (W)} o= 8], 8,r 3(x—Y);

(29)

ing ¢y is always the last one in the chain of constraints.
Hence fora# —1, 6, is the last constraint, and we have then
5 (X 4) constraints, all of them being second class. Counting
the number of DOF for this case we certainly find an excess
of them, because we are one constraint too short as compare
to the free case where the DOF counting is built in correctly.
Thus, we conclude that f@# — 1 thewNA interaction con-
sidered here imconsistentvith the free theory construction.
The same conclusion has been drawn by Nath, Etemadi, and
Kimel [2] based on a constraint analysis in Lagrangian for-
mulation. The choica= —1 is thus preferable and we con-
tinue the analysis for this case only.

Fora=—1, the 8, constraints read

04(X)=—i0jjdif;+my; i+ 9y Vo b,
t Coot t @7
03() = —id;¢ oy =Ml v — gV 7,0,

As in the free case, constraingg and ¢ are linearly pro-
portional toy,. Now only with a different coefficient

RO = f Ay {0400, 650y} o =i[ EMP— g2(4,6)2).
28)

At this point we hit another problem. The coefficient may
vanish wherg m?=g?(9;¢)2. Then, either the, constraints
are first class, or we will find some further second-class con-
straints. In any case the DOF counting will again be different
from that of the free theory. In the massless case the situation
is even worse since the problem occurs for any value of
9%(0i ).

It is interesting to note that the same problem arises in the
constraint analysis of the minimal coupling of the RS field to
the external electromagnetic fidlii4,15. There it was iden-
tified with the JS-VZ problem. On the other hand, Hagen
[16] and Singh17] revealed the JS and VZ problems in the
7NA coupling being considered. Their analysis is done in
lines with the original treatmenrtl1,12 and thus is rather

all the other brackets vanish. Note that the brackets are syndfferent from ours; nevertheless, the factor giving rise to the
metric in the case of fermionic variablegsuch as JS and VZ problem in their works is precisé®(x) of Eq.
W11, 4, ,7*) and antisymmetric in the case of bosonic vari- (28). Moreover, we can easily compute the field commuta-
ables(such as¢,P,H), they are also antisymmetric in the tors taking into accouné, constraintdi.e., the second stage
mixed case. Dirac brackel, and find that the corresponding quantum

Next we resolve the second-class constraéhtand y by
introducing corresponding Dirac brackets, and note

commutators are not positive definite, becatses not, in
line with Hagen’s conclusion. We can therefore confirm the
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observation 0f13,14] that the JS-VZ problem appears itself (although note that this is not a Lorentz-invariant conditjon

in the violation of constraints. and write down the path integral. According to E@5) we
To proceed with the quantization let us assuR{g)#0  need

0 0 R 0
_io-ij Fi {0“0;} 0
(defl{ 6, 6}¢l) *=de 1y 0 {64,608 9vide | sf(x—y). (29)

{05,067} {05,605} {60s.00} {65.x"}
0 gvidid {Xﬁg} —i

O XU O O O

Simplifying this determinant and carrying out the integration If other fields do not change under the gauge transforma-

over the conjugate momenta we obtain tion, we can concentrate just on ti#g dependent part of the
Lagrangian, which is
_ t t
z J’,Dl//’u ,Dl//’u DY DY D £:£3/2+£Iinear-
xde{(iyiaph%m— %(& ¢>)2) é\g(x_y)} 'Fl)'lkifsgauge invariance of the massless Lagrangian then im-

xexpx(if L). (30 9,J*=0. (32)

Determining the constraints, we find the usual primary con-
Thus, our final path integral differs from the naive path in- straints
tegral by the nontrivial determinant entering the measure.

Noncovariant field-dependent determinants do often occur O L
in the Hamiltonian path-integral quantization of systems with O 9(dotho)
second-class constraints, see Rdf33,34. Usually their
contributions to the Green functions is canceled by the sinand ¢, of Eq. (3). The ¢; constraints do not produce any
gular terms coming from the time-ordering operators, so thasecondary constraints, while requiring time independence of
resulting Green functions are covariant. It would be interestf, gives us the usual
ing to see whether this mechanism occurs also in the case of

(33

Eq. (30) or, perhaps, there is indeed some breaking of Lor- 04=3g0. (34)
entz symmetry suggested by the presence of the JS-VZ prob-
lem. y y'sugg y P P Now, using the Euler-Lagrange field equations and B2),
we obtain
IV. GAUGE-INVARIANT COUPLINGS Os=o0a= M, . (35)

In the previous section we have seen that the conventional
7NA interaction suffers from inconsistencies related to the! 'US: only the mass term can affect the number of con-
violation of constraints, in particular the JS-VZ problem. OnStraints, which proves) for the case of linear coupling.
the other hand, it is intuitively clear théi) gauge-invariant According to(i) it seems promising to search for consis-

couplings are generally consistent with the DOF counting!€Nt 7NA couplings among the gauge-invariant ones. The

Indeed, the number of constraints is related to the number cfMPlest way to construct those is to couple the RS field to
local symmetries of the Lagrangian, while gauge-invarian@" €xplicitly conserved currentActually, the only other
couplings do not destroy the symmetry of the free RS La\W&y We can see is to allow the pion and the nucleon field

grangian where the DOF counting is correct. We can prov Iso transform under the gauge transformation, similarly_ to
statementi) more rigorously for the linear couplings of the NOW they transform under the photon gauge transformation.

RS field, i.e., the case when the interaction Lagrangian ig NS, however, would obviously require a supersymmetric
given by realization. Although an interesting possibility, here we re-

strict ourselves to nonsupersymmetric realizatipns.
Liinear= lﬁL J¢+H.ec., (3D _ The [owgst i!’] derivatives explicitly gauge—[nvariamNA
interaction is given by the following Lagrangian:
J# is independent ofy,, The proof proceeds as folloWsve .
basically follow the proof of Eq(8.2.5 in Ref.[32]]. Lin=9(d,4,)c*"¥ $+H.c. (36
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However,l this interaction is in some sense trivial: it d(_escnbes H=1(P—F)2+1(d¢)%+ %(,ud))2+‘1_f(i .6+ M)W
the coupling of the nucleon and pion & ¢ and y- ¢, i.e.,

the spin-1/2 sector of tha field. Furthermore, the corre- +[¢804+%%(8ijk YoVs Ikt mUij)llfjer%Uijﬁjg

sponding tree-level Feynman amplitude for thél scatter- ;

ing through a virtualA exchange —9eij (di¢;) ysV okt H.C], (42)
M(p)=F“(p)SaB(p)l“E(p), (37  where F=—ig(ai¢;’)aij\If+H.c., and 6, is given in Eq.

(41). Once again, we introduce the Dirac bracket with re-
wherep is four-momentum of thé, I'*(p) andS,4(p) are  spect to the second-class constrairtis s, x) and find that
the naive Feynman rules for the vertex and the RS propagdhe field commutators remain to be given by E@s8), (25).

tor, respectively, Now, as can be shown by a direct computation, but also
follows from the proof given in the beginning of this section,
r“(p)=go“*p,, (38) the secondary constrainty,, commutes with the total
Hamiltonian. Hence, constrainfgl) are all constraints in
the model.
p+m . . .
Sup(P)= = Gap— 3 Ya¥ The construction of the path integral goes in exactly the
o 2_ 2 « alpB . . N . .
pT—m same way as discussed in the Appendix. Although in this

case the matrix of the second-class constraint Poisson brack-

1
Rl 7 RS B
i oy my; igodxed
vanishes exactlyM (p) =0, for all p. Having such a classi- [{6@, 612} ||=— my; 0 0
cally “invisible” A is maybe interesting in some scenarios, igo b O i
i

but certainly not in the applications we are interested in here.

We thus should conclude that theNA interaction(36) in- X 83(x—y), (43

volves a correct number af’s field components, however,

they have wrong spin representing parts of the spin-1/2 seds field dependent, its determinant is not,

tor of the RS field, consequently this interaction can not de- )

scribe a physical coupling to the spin-3/2 particle. defl{6'?), 6"} o] =def3im?5%(x—y)], (44)
The next lowest in derivatives gauge-invariant interaction

is written down in the Introduction, and reads as follows: and can be neglected. _ ,
Taking the Coulomb gauge, integrating out the momenta

and covarianizing the measure we obtain the following

C_qehreB (g
Lim=098""7 (0,1,) v5 7o ¥ dpbFH.C. (40 configuration-space path integral of the model:

For this interaction the tree-level amplitude does not vanish.

Moreover, the result is not sensitive tar/ term of the RS sz Dy, Dz//L DY DY T D DEDE S(y- )

propagator, thus a well-defined massless limit is guaranteed.

We shall discuss the tree-level calculation in more detail, but )

first let us perform the DF quantization of this interaction. X8(y"y) ex% 'f L
To treat the massive and massless case simultaneously we

introduce the Sickelberg spinor(x) described in the Ap-  Another important simplification which occurs here due to

pendix. Our model Lagrangian is thus defined by EGS),  the gauge symmetry is the decoupling of thé cRalberg

(A1), and(40). spinor. We thus may easily integrate it out as well, obtaining
The model has the following primary and secondary con-

straints(the Hermitian conjugates are omitjed

. (45

Z=f D, Dy, DY DY DpS(y- ) S(y"- y)
i=mi—ioy(z¢;+9¥d; ),

x(s(a.w)s(a-w)exp(if c), (46)
Os=n—my;;,
where the free spin-3/2 Lagrangian is now given by &,
y=I-1iv, (41  While the rest of the terms i remain unchanged. Note that
starting from the transverse gauge we would obtain the same
0= 1 expression.
oo Let us now reconstruct the Feynman rules for the RS
field. The delta functions in our final path integral clearly
0,=—liojjdigj+my g+ my;0;§—ig9 00,V d; b, indicate that the Green functions are independent of the spin-
1/2 sector ofy,,. We can use for instance the following
and the Hamiltonian density given by “Feynman gauge” expression for the spin-3/2 propagator:
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1 provides a straightforward procedure where the control over
Sup(P)= ——(Gup= 3 Ya¥p)- (47 the degrees of freedom can be done in a simple transparent
p—m way. We have applied this procedure to the conventional
7NA coupling, Eq.(1), and find this coupling has a number
of problems precisely due to the coupling to extra DOF. This
u — i pvaB goes in line with some previous analy4@s16,17, as well
Mkp)=ige PuYsYakp: “8) as with the common knowledge that this coupling always
wherek is pion momentum, Whll@ can be chosen to repre- prOduceS UnphySical Spin-l/Z baCkgrOUndS in addition to the
sent the momentum of either tlde or the nucleon. Spin—3/2 contribution. For the choi@e= — 1, the problem is
Using these rules we can easily compute the tree-levelot so pronounced, nevertheless it is present and can be re-
amplitude for therN scattering through the or u-channel lated to the well-known JS-VZ problem. Furthermore, we

The expression for the vertex reads

A exchangeforgetting about the isospin argue that for this choice the “naive” Feynman rules may be
unapplicable since in principle there are contributions from
M(Kk’,k;p)=T"*(k’,p) S,z(p) I'A(k,p) the determinant in the path integral E§O).

Further, we have suggested to use couplings which are
_ 02 P¥2(p) k' kA (49 invariant under the gauge transformation of the RS field Eq.
p—m ap ' (14). As has be_en conjectured and par_tlally prc_)ved in Sec.
IV, these couplings are generally consistent with the DOF
where counting (unitarity). We have considered two lowest in de-
rivatives gauge-invariantrNA couplings. The first one de-
ao ) 1 scribes the coupling to purely the spin-1/2 sector of the RS
Pos(P)=Yap=5Ya¥s™ -5 (BYaPptPaypb), (50  field, and we abandon its further analysis for this reason. The
3p second coupling, Eq40), describes the coupling to purely
pin-3/2 sector of the RS field. This conclusion is derived

is the spin-3/2 projection operator. This operator has th . . X
well-known property of projecting on the spin-3/2 states an oth nonpertqrbatwely from the resyltlng path integ#s),
property of proj g P and perturbatively from the calculation of the tree-level am-

is a clear signature of the spin-3/2 components. Our amp“_litude, Eq.(49). The gauge-invariant coupling E40) is

tude is thus independent of the spin-1/2 sector of the R . . oS :
thus a good candidate for a consistent cubic interaction of a

field, which is certainly the result we desired to obtain. . . X . . i
The spin-3/2 projection operator was used previously inscalar, spinor and vector-spinor fields in flat Minkowski

; : space time.
some phenomenological models although in a ratttehoc . . : . i
way, such as, for example, replacing the tensor part of the RS Somg other. consstgnt Interactions .Of the spin-3/2 field
propagator by the projection operator, etc., see, e.g., refe an be !mmed|ately written (_10wn know_mg that they should
ences cited if4]. However, in these models problems arise e restricted by gauge invariance. For instance,

due to the 19 nonlocality of the projection operator. In Eq.

g2

(49) this problem is obviously not present, which is not sur- Lran=9maath,vsG"9, ¢, (51
prising since we depart from a local Lagrangian. — By
It may look that the JS-VZ problem for coupling0) is Lyna=9na¥ 0 ,p,,GPFF +H.C, (52)

avoided just because we made use of thel@liberg mecha-

nism: 6, is then guaranteed to be the first-class constrain

and the problem discussed below E28) cannot occur. Sup-

pose, however, we do not introduce the &eiberg field. In

this case,f, is given by Eq.(41) with £&=0, and the com-

mutator ofé, constraints is given by Eq13), i.e., is exactly + derivative terms, (53

the same as in the free theory. Thus, the JS-VZ problem does 5

not occur here, independently of whether thecBaiberg and, finally,G,,=d,¥,—d,¥,, G“”:s“mﬁaa(pﬁ.

field is used or not. An acceptableyAA interaction can also be easily found
On the other hand, suppose we would like to avoid theas long as the coupling to the photon is “anomalous,” i.e.,

JS-VZ problem in the conventional coupling by using theoccurs only throughr#”. On the other hand, to write down a

Stickelberg mechanism. Then, indeed, the corresponding consistent minimal coupling is not a trivial task since it is

constraint becomes first class, hence its commutator vanishésen difficult to satisfy both photon and spin-3/2 gauge sym-

instead of being field-dependent as in E2Q). In that case, metries at the same time. In this case, as well as in other

however, the Sitkelberg field does not ever decouple andcases when one needs to set up lower-derivative interactions,

the excess of DOF becomes thus explicit, leading again tsupersymmetry might be the only option.

the unitarity problem.

YvhereFf” is the electromagnetic field strengt®, is a con-
Stant tensor, e.g.,

G)aﬁ,,u.V: ga,u,gﬁv_l— algaM767V+ a28,u,vaﬁ
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APPENDIX: STUCKELBERG MECHANISM (600,67 (Y)p=—i 2 S(x—vy), (A8)
FOR THE SPIN-3/2 FIELD 3m?

Our procedure goes in full analogy to the massive spin-1 1
case (the Proca modgl We introduce a “Stokelberg x). of =1 (x). & = 0 B (x—V).
spinor” &(x) replacingy, by ,+4d,¢ in the free Lagrang- {004 Nl =11 (0. £ (Yo 3m” (x=y)
ian (2). The Lagrangian reads then as follows:
We find then that the secondary constraint commutes with

Lap=3¢,{c*", (i6—m)} ¥, the Hamiltonian, i.e.,

—M(3,E) ot Y, m Mo d,E (AL {04, Hadp=0, (A9)
and it is manifestly invariant under the gauge transformationy, s no further constraints arise. We also conclude daat
W+ € and ¢, are the first-class constraints.

pooTRS TR (A2) Let us denote the first-class constraints "
Eoé—e. =(69,6,), the corresponding gauge-fixing conditions @s
=(¢1,0,), and the second-class constraints &5
We define the conjugate momehta =(#6;,605). Then, assuming’s commute among themselves,

_ _ the path integral can be put in the following forisee, e.g.,
7N () =Ly, (x),  7'(X)=3dLld&(x), (A3)  [22,23)):

and fundamental Poisson brackets

Z= f Dy, Dy!, DE DE' Dt DDy D'
{00, T (Y)}p=8,8,,8%(x~y),

(A4) xdefl {6, ¢}ol (defl{6'?,6}]) 12
{02, mi(V)}p=8,,6%(x—Y),
wherer,0=0, . . .,3 are thespinor indices. We obtain then x11 a(e)a(¢")8(0) 50"
the following primary constraints:
B(X) = (X, xexp{ i f d*X[ T, + gl i+ T+ E = Hapl .
i (A10)
0i(x)=mi(X) = 5 0 (%), (A5)

In our case dd{6®),6)},| is just a constant and can be
dropped, since the path integral is defined up to a normaliza-
Os(X)=n(X) —my;i(X), tion factor.

Clearly one of the gauge-fixing conditions must be pro-
portional toyq in order to match th&, constraint. We take
©1= g, then forg, there is a number of possibilities, e.g.,

and the Hamiltonian

H3/2: f d3X H3/2,
(A6) ®2=7v#; (Coulomb gauge

Ha= 04+ 3 dil&ijk Yo¥s dt M)

+m%a'ij(9j§+ H.c.,

@o,=0d;; (tfransverse gauge

_ o ®o= 3 (axial gauge,
where é, is the only secondary constraint, given by

¢o=§¢ (unitary gauge

8We shall omit similar formulas for the Hermitian-conjugate fields Let us choose the Coulomb gauge. Integrating over the con-
where possible. jugate momenta we then arrive at

096002-8
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z- | Dy, Dy, DEDE (de 70,7

X 8(yigh) S(i ;)€ s, (A11)

Now, having the gauge symmetry at our disposal, we may

use the Faddeev-Popov tri¢k9,24,39 to covarianize the

measure. We thus obtain the path integral in a covariant

gauge,

z= f Dy, Dy, D¢ DE'(def 4])?

X 3(y ) S(YT- y)exp(i [ Lap). (A12)

PHYSICAL REVIEW D58 096002

Starting from the transverse gauge we would arrive at

Z= f Dy, Dy, DE DE'(def 9,,9"])?

xa(a.¢)5(a-¢T)exp<i J 53,2). (A13)

In these gauges the massless limit can be obtained directly.
On the other hand, taking the unitary gauge and integrating

over ¢'s gives us back Eq(18).
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